

14/1 Cowpasture Place, Wetherill Park, NSW 2164, Australia (PO Box 6989, Wetherill Park, NSW 2164, Australia) T +61 2 9756 2166 | F +61 2 9756 1137 www.stsgeo.com.au ABN 45 636 179 729 | ACN 636 179 729

> December 16, 2024 Project No. 30060/1998 Report No. 24/3670 MH/ms

SUMMARY SHEET

Client: MOJO Homes Address: Lot 113, 22 Pyramid Avenue, Padstow Reference: 652354/016/01

SITE CLASSIFICATION	P/H1	AS2870-2011
WIND CLASSIFICATION	N1	AS4055-2021
EXPOSURE CLASSIFICATION	A1	AS2870-2011

This summary sheet must be read in conjunction with the full report.

December 16, 2024 Project No. 30060/1998 Report No. 24/3670 MH/ms

SITE INVESTIGATION REPORT

Client: MOJO Homes Address: Lot 113, 22 Pyramid Avenue, Padstow Proposed Development: Residential dwelling

Site Description

Approx. area (m²): 490
Approx. fall: 2 metres to the northeast, good site drainage
Vegetation: Grass, shrubs and trees
Improvements: Existing dwelling

Geology, Fieldwork Details and Subsurface Conditions

The Sydney geological series sheet at a scale of 1:100,000 shows the site is underlain by Triassic Age Ashfield shale of the Wianamatta Group. Rocks within this formation comprise of shale and laminite.

Two boreholes were drilled and two Dynamic Cone penetrometer (DCP) tests were carried out on November 14, 2024 at the locations shown on Drawing No. 24/3670. Restricted site access dictated the borehole locations. *Because there was no access for the drilling rig, both boreholes were drilled using a hand auger.* The subsurface conditions encountered are shown on the attached borehole logs. Explanation sheets and notes relating to geotechnical reports are also attached.

When assessing the subsurface conditions across a site from a limited number of boreholes, there is the possibility that variations may occur between test locations. The data derived from the site investigation programme are extrapolated across the site to form a geological model and an engineering opinion is rendered about overall subsurface conditions and their likely behaviour regarding the proposed development. The actual condition at the site may differ from those inferred, since no subsurface exploration programme, no matter how comprehensive, can reveal all subsurface details and anomalies.

The subsurface conditions consist of topsoil and fill overlying natural silty clays. The topsoil and fill are present to a depth of 0.4 metres. Very stiff with depth, natural silty clays underlie the topsoil and fill to the depth of hand auger refusal, 0.8 metres.

No groundwater was observed in the boreholes during the fieldwork.

Wind Classification

The classification given below has been prepared to assist the designer in accordance with the guidelines set out in AS4055-2021 "Wind loads for housing". This assessment has been undertaken and verified using a commercially available software CHECKWINDv7.3.7 by Revolutio. Final designs should be verified by an experienced qualified structural engineer to accurately determine the appropriate Wind Classifications in accordance with the Building Code of Australia.

Region	A
Terrain Category	TC3
Topographic Classification	T1
Shielding	FS
Rating	N1

Laboratory Testing

The sample collected for shrink swell testing was unsuitable. Experience has shown that at times, the shrink swell index can be estimated by dividing the soil Plasticity Index (PI) by a factor of 10. The soil tested at this site has a PI of 39% which implies the shrink swell index is 3.9% per Δ pF.

Site Classification

The classification has been prepared in accordance with the guidelines set out in the "Residential Slabs and Footings" Code, AS2870 - 2011.

Because there are trees and an existing dwelling present, abnormal moisture conditions (AMC) prevail at the site. (Refer to Section 1.3.3 of AS2870).

Due to the AMC, the site is classified a *Problem Site (P)*. However, provided the recommendations given below are adopted, the site may be re-classified *highly Reactive (H1)*. After cutting and filling the classification remains unchanged.

Foundation design and construction consistent with this classification shall be adopted as specified in the above referenced standard and in accordance with the following design details.

Foundation Design and Construction

Pad and/or strip footings founded in the natural soils below any topsoil and fill, may be proportioned using an allowable bearing pressure of 100 kPa. The minimum depth of founding must comply with the requirements of AS2870. In order to overcome the presence of trees, the foundations should be designed in accordance with the procedures given in Appendices H and CH of AS2870-2011.

Piers founded in very stiff natural silty clays may be proportioned using an allowable end bearing pressure of 300 kPa, provided their depth to diameter ratio exceeds a value of 4. An allowable adhesion value of 20 kPa may be adopted for the portion of the shaft below a depth of 0.5 metres.

To ensure the bearing values given can be achieved, care should be taken to ensure the base of the excavations is free of all loose material prior to concreting. To this end, it is recommended that all excavations be concreted as soon as possible, preferably immediately after excavating, cleaning, inspecting and approval. Pier excavations should not be left open overnight. The possibility of groundwater inflow needs to be considered when drilling the piers and pouring concrete.

The site is considered suitable for slab on ground construction provided due regard is given to the ground surface slope.

During foundation construction, should the subsurface conditions vary to those inferred in this report, a suitably experienced geotechnical engineer should review the design and recommendations given above to determine if any alterations are required.

Soil Aggressiveness

The exposure classification for the concrete has been determined for the onsite soils. The exposure classification is obtained from Tables 5.1 and 5.2 of AS2870-2011. In regards to the electrical conductivity, the laboratory test results have been multiplied by the appropriate factor to convert the results to EC_e .

Detailed test reports are attached and summarised below, together with the exposure classification.

Sample No.	Electrical Conductivity (dS/m)		рН	Sulfate (ppm)	Exposure Classification
	EC _{1:5}	EC _e			
S1/1998	0.027	0.3	6.2	270	A1

The minimum concrete strength and reinforcement cover required for the various exposure classifications are given in Tables 5.3 and 5.4 of AS2870-2011 (see attached).

Additional Comments

Attention is drawn to Appendix B of AS2870 - 2011 regarding the need to properly maintain the foundations. Surface drainage should be provided to avoid the possibility of water ponding near the building and the finished ground surface should fall at least 50 mm over a distance of one metre away from the building.

The above classification has been made assuming that all footings will bear weathered bedrock. Prior to the placement of any filling the existing surface should be stripped of all vegetation and topsoil.

If excavations for rainwater or detention tanks are to be made within 6 metres of the building foundations, advice should be sought regarding their effect on the foundations.

Placing absorption trenches on the high side of the property may create abnormal moisture conditions for the foundations (Refer to Section 1.3.3 of AS2870). This could have a negative effect on the foundation performance and more than likely alter the site classification provided above.

This report has been prepared assuming that no trees other than those noted will be present on the site. If future tree planting is planned, eg. there is a landscaping plan, their effect on the foundation performance must be considered.

This report has been prepared assuming the site development will be limited to one or two storey residential buildings. The information and interpretation may not be relevant if the design proposal changes (e.g. to a five-storey building involving major cuts during the site preparation). If changes occur, we would be pleased to review the report and advise on the adequacy of the investigation.

Yours faithfully,

Masoud Haghparast Senior Geotechnical Engineer STS Geotechnics Pty Limited

Important Information

INTRODUCTION

These notes have been provided to outline the methodology and limitations inherent in geotechnical reporting. The issues discussed are not relevant to all reports and further advice should be sought if there are any queries regarding any advice or report. When copies of reports are made, they should be reproduced in full.

GEOTECHNICAL REPORTS

Geotechnical reports are prepared by qualified personnel on the information supplied or obtained and are based on current engineering standards of interpretation and analysis.

Information may be gained from limited subsurface testing, surface observations, previous work and is supplemented by knowledge of the local geology and experience of the range of properties that may be exhibited by the materials present. For this reason, geotechnical reports should be regarded as interpretative rather than factual documents, limited to some extent by the scope of information on which they rely.

Where the report has been prepared for a specific purpose (eg. design of a three-storey building), the information and interpretation may not be appropriate if the design is changed (eg. a twenty storey building). In such cases, the report and the sufficiency of the existing work should be reviewed by STS Geotechnics Pty Limited in the light of the new proposal.

Every care is taken with the report content, however, it is not always possible to anticipate or assume responsibility for the following conditions:

- Unexpected variations in ground conditions. The potential for this depends on the amount of investigative work undertaken.
- Changes in policy or interpretation by statutory authorities.
- The actions of contractors responding to commercial pressures.

If these occur, STS Geotechnics Pty Limited would be pleased to resolve the matter through further investigation, analysis or advice.

UNFORSEEN CONDITIONS

Should conditions encountered on site differ markedly from those anticipated from the information contained in the report, STS Geotechnics Pty Limited should be notified immediately. Early identification of site anomalies generally results in any problems being more readily resolved and allows reinterpretation and assessment of the implications for future work.

SUBSURFACE CONDITIONS

Logs of a borehole, recovered core, test pit, excavated face or cone penetration test are an engineering and/or geological interpretation of the subsurface conditions. The reliability of the logged information depends on the drilling/testing method, sampling and/or observation spacings and the ground conditions. It is not always possible or economic to obtain continuous high quality data. It should also be recognised that the volume or material observed or tested is only a fraction of the total subsurface profile.

Interpretation of subsurface information and application to design and construction must take into consideration the spacing of the test locations, the frequency of observations and testing, and the possibility that geological boundaries may vary between observation points.

Groundwater observations and measurements outside of specially designed and constructed piezometers should be treated with care for the following reasons:

- In low permeability soils groundwater may not seep into an excavation or bore in the short time it is left open.
- A localised perched water table may not represent the true water table.
- Groundwater levels vary according to rainfall events or season.
- Some drilling and testing procedures mask or prevent groundwater inflow.

The installation of piezometers and long term monitoring of groundwater levels may be required to adequately identify groundwater conditions.

SUPPLY OF GETEOECHNICAL INFORMATION OR TENDERING PURPOSES

It is recommended tenderers are provided with as much geological and geotechnical information that is available and that where there are uncertainties regarding the ground conditions, prospective tenders should be provided with comments discussing the range of likely conditions in addition to the investigation data.

TABLE 5.1 FROM AS2870-2011

EXPOSURE CLASSIFICATION FOR CONCRETE IN SALINE SOILS

Saturated Extract Electrical Conductivity (EC _c), dS/m	Exposure Classification
<4	A1
4-8	A2
8-16	B1
>16	B2

NOTES:

- 1. Guidance on concrete in saline environments can be found in CCAA T56.
- 2. Exposure classifications are from AS3600.
- 3. The currently accepted method of determining the salinity level of the soil is by measuring the extract electrical conductivity (EC) of a soil and water mixture in deciSiemens per metre (dS/m) and using conversion factors that allow for the soil texture to determine the saturated extract electrical conductivity (ECe).
- 4. The division between a non-saline and saline soil is generally regarded as an EC_e value of 4 dS/m, therefore no increase in the minimum concrete strength is required below this value.

TABLE 5.2 FROM AS2870-2011

EXPOSURE CLASSIFICATION FOR CONCRETE IN SULFATE SOILS

Exp	Exposure Conditions			Exposure Classification		
Sulfates (expr	essed as SO ₄)*					
In Soil	In Groundwater	pН	Soil Conditions	Soil Conditions		
ppm	ppm		A†	B‡		
<5000	<1000	>5.5	A2	A1		
5000-10 000	1000-3000	4.5-5.5	B1	A2		
10 000-20 000	3000-10 000	4-4.5	B2	B1		
>20 000	>10 000	<4	C2	B2		

* Approximately 100 ppm SO₄ = 80 ppm SO₃.

- Soil conditions A high permeability soils (eg. Sands and gravels) that are in groundwater.
- Soil conditions (eg. ‡ В low permeability soils Silts and clays) or all soils have groundwater.

TABLE 5.3 FROM AS2870-2011

MINIMUM DESIGN CHARACTERISTIC STRENGTH (f'_c) AND CURING REQUIREMENTS FOR CONCRETE

Exposure Classification	Minimum <i>ť _c</i> MPa	Minimum Initial Curing Requirement
A1	20	Cure continuously for at
A2	25	least 3 days
B1	32	
B2	40	Cure continuously for at
C1	≥50	least 7 days
C2	≥50	

TABLE 5.4 - FROM AS2870-2011

MINIMUM REINFORCEMENT COVER FOR CONCRETE

Exposure Classification	Minimum Cover in Saline Soils* (mm)	Minimum Cover in Sulfate Soils† (mm)
A1	See Clause 5.3.2	40
A2	45	50
B1	50	60
B2	55	65
C1	‡	70
C2	‡	85

- * Where a damp-proofing membrane is installed, the minimum reinforcement cover in saline soils may be reduced to 30 mm.
- t Where a damp-proofing membrane is installed, the minimum reinforcement cover in sulfate soils may be reduced by 10 mm.
- \$ Saline soils have a maximum exposure classification of B2 as per Table 5.1.

GEOTECHNICAL LOG - NON CORE BOREHOLE

5	15		MOJO Homes t: Lot 113, 22 Pyramid Avenue, Padstow	Project Number: 30060/1998 Date : November 14, 2024	В	OREHOLE NO.:	BH1
BEOTECHN DNSULTING GEO	NICS PTY LTD TECHNICAL ENGINEERS		on: Refer to Drawing No. 24/3670	Logged: MB Checked By: MT		Sheet 1 of 1	
N A T T A E B R L E	S A P L E S	DEPTH	DESCRIPTION OF DRIL Soil Name, grain size /plasticity, colour; secondary cons		S Y M B O	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R
	5	(m)	including other i TOPSOIL: SILTY CLAY: low plasticity, dark brown, with ro		L CL	-	E <pl< td=""></pl<>
			FILL: SILTY CLAY: medium plasticity, brown, with gravel	Juers	CI	- 	<p1< td=""></p1<>
	<u>\$1</u>		SILTY CLAY: low to medium plasticity, orange brown mo	tled grev and vellow brown, trace of gravel	CL/CI	VERY STIFF	<p< td=""></p<>
		0.5					
	D		HAND AUGER REFUSAL AT 0.8 M				
		1.0					
		1.5					
		2.0					
		2.5					
		f water table o		I - Standard Penetration Test (SPT) Eq	ntractor: uipment:	Christie	<u> </u>
TES:	S - jar sampl	e	See explanation sheets for meaning of all descriptive ter	ms and symbols Ar		ter (mm): 100 Vertical (o): 0	

GEOTECHNICAL LOG - NON CORE BOREHOLE

5	15		MOJO Homes t: Lot 113, 22 Pyramid Avenue, Padstow	Project Number: 30060/1998 Date : November 14, 2024	1	OREHOLE NO.:	BH2
GEOTECHI CONSULTING GEC	NICS PTY LTD OTECHNICAL ENGINEERS	•	on: Refer to Drawing No. 24/3670	Logged: MB Checked By: MT		Sheet 1 of 1	1
W AT AB RL E	S A P L E S	DEPTH (m)	Soil Name, grain size /plasticity, colour; secondary	DRILLED PRODUCT	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
		()	including c FILL: SILTY CLAY: low plasticity, brown, with gravel	ther remarks	SM	-	- <pl< td=""></pl<>
			SILTY CLAY: medium plasticity, orange brown, trace	e of gravel	SM	VERY STIFF	=PL
		0.5		-			
		1.0	HAND AUGER REFUSAL AT 0.8 M				
		1.5					
		2.0					
		2.5					
		f water table o	U - undisturbed tube sample r free water	N - Standard Penetration Test (SPT)		: Christie	
NOTES:	S - jar sampl	e	See explanation sheets for meaning of all descripti	ve terms and symbols Ar		eter (mm): 100 9 Vertical (o): 0 piral	

Test Method: AS 1289.6.3.2

STS Geotechnics Pty Ltd

14/1 Cowpasture Place, Wetherill Park NSW 2164 Phone: (02)9756 2166 | Email: enquiries@stsgeo.com.au

Accredited for Compliance with ISO/IEC 17025 - Testing No. 2750

Dynamic Cone Penetrometer Test Report

Project: Lot 113, 22 Pyramid Avenue, Padstow **Client: MOJO Homes** Address: 62 Norwest Boulevard, Baulkham Hills
 Project No.:
 30060/1998

 Report No.:
 24/3669

 Report Date:
 23/11/2024

 Page:
 1 of 1

Site No.	P1	P2					
Location	Refer to Drawing No. 24/3670	Refer to Drawing No. 24/3670					
Date Tested	14/11/2024	14/11/2024					
Starting Level	Surface Level	Surface Level					
Depth (m)		Pe	netration Resistar	nce (blows / 150m	m)		
0.00 - 0.15	3	23+					
0.15 - 0.30	8	*					
0.30 - 0.45	4	*					
0.45 - 0.60	13	8					
0.60 - 0.75	14	11					
0.75 - 0.90	Discontinued	16					
0.90 - 1.05		23+					
1.05 - 1.20		Discontinued					
1.20 - 1.35							
1.35 - 1.50							
1.50 - 1.65							
1.65 - 1.80							
1.80 - 1.95							
1.95 - 2.10							
2.10 - 2.25							
2.25 - 2.40							
2.40 - 2.55							
2.55 - 2.70							
2.70 - 2.85							
2.85 - 3.00							
3.00 - 3.15							
3.15 - 3.30							
3.30 - 3.45							
3.45 - 3.60							
3.60 - 3.75						-	
Remarks: *	Pre drilled prior to	testing		Approved Signato	May	per len	
Tochnisian	MD			Approved Signato	-		•••••
Technician:	MB				Mrigesh Tamang		

Test Method: AS1289.3.1.2,3.2.1,3.4.1,2.1.1

Report Date: 12/12/2024 Page: 1 of 1

Sampling Procedure: AS 1289.1.2.1 Clause 6.5.3 - Power Auger Drilling (Not covered under NATA Scope of Accreditation)

STS / Sample No.	1998/1				
Sample Location	BH1				
Material Description	Gravelly Silty CLAY; brown, trace of rootlets				
Depth (m)	0.6-0.8				
Sample Date	14/11/2024				
Sample History	Air Dried				
Method of Preparation	Dry Sieved				
Liquid Limit (%)	69				
Plastic Limit (%)	30				
Plasticity Index	39				
Linear Shrinkage (%)	16				
Mould Size (mm)	149.78				
Crumbing	Ν				
Curling	Ν				
Remarks:			Approved Signate	Mager	m
Technician:	DS			Mrigesh Tamang	

CERTIFICATE OF ANALYSIS Work Order Page : ES2437419 : 1 of 2 Client : STS Geotechnics Laboratory : Environmental Division Sydney Contact ENQUIRES STS Contact : Customer Services ES Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : Unit 14/1 Cowpasture Place Wetherill Park 2164 Telephone : -----Telephone : +61-2-8784 8555 Project : 30055, 30060, 32920 Date Samples Received : 15-Nov-2024 13:20 Order number : 2024-455 Date Analysis Commenced : 19-Nov-2024 C-O-C number Issue Date : -----: 21-Nov-2024 16:02 Sampler : MB Site : -----Quote number : EN/222 "hilahow Accreditation No. 825 No. of samples received : 4 Accredited for compliance with

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

ISO/IEC 17025 - Testing

This Certificate of Analysis contains the following information:

: 4

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

No. of samples analysed

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

 \sim = Indicates an estimated value.

• ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	30055/9917	30055/9919	30060/1998	32920/S1	
		Sampli	ng date / time	14-Nov-2024 00:00	14-Nov-2024 00:00	14-Nov-2024 00:00	15-Nov-2024 00:00	
Compound	CAS Number	LOR	Unit	ES2437419-001	ES2437419-002	ES2437419-003	ES2437419-004	
				Result	Result	Result	Result	
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	5.4	6.5	6.2	6.2	
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm	68	35	27	260	
EA055: Moisture Content (Dried @ 105-	110°C)							
Moisture Content		0.1	%	9.4	9.7	14.2	12.4	
ED040S : Soluble Sulfate by ICPAES								
Sulfate as SO4 2-	14808-79-8	10	mg/kg	<10	50	270	100	
ED045G: Chloride by Discrete Analyser								
Chloride	16887-00-6	10	mg/kg				540	

EXPLANATION OF NOTES, ABBREVIATIONS & TERMS USED ON BOREHOLE AND TEST PIT LOGS

DRLLING/EXCAVATION METHOD HA Hand Auger ADH Holkow Auger NQ Diamond Core - 47 mm DT Diatube Coring RT Rotary Tricone bit NMLC Diamond Core - 52 mm NDD Non-destructive digging RAB Rotary Air Blast HQ Diamond Core - 63 nm AD* Auger Colling RC Reverse Circulation HMLC Diamond Core - 63 nm *V V-Bit PT Push Tube EX Tracked Hydraulic Excavator *T TC-Bit, e.g. AD/T WB Weshbore HAND Excavated by Hand Methods PENETRATION RESISTANCE L Low Resistance Penetration/ excavation possible at an acceptable rate with moderate effort from equipment used. M Medium Resistance Penetration/ excavation possible at an acceptable rate with moderate effort from equipment used. R Refusal/Practical Refusal No further progress possible without risk of damage or unacceptable was no equipment used. These assessments are subjective and are dependent on many factors, including equipment power and weight, condition of excavation or diffing toda and experience of the operator. WATER Standing Water Level Complete Water Loss Complete Water Loss Complete Water Los	CONDOL										
DT Diatube Coring RT Rotary Arr Biast NML C Diamond Core - 52 mm NDD Non-destructive digging RAB Rotary Air Blast HQ Diamond Core - 63 mm AD* Auger Drilling RC Reverse Circulation HML C Diamond Core - 63 mm Y V-Bit PT Push Tube EX Tracked Hydraulic Excavator *T TC-Bit, eg. AD/T WB Washbore HAND Excavated by Hand Methods PENETRATION RESISTANCE Rapid penetration/ excavation possible with little effort from equipment used. Medium Resistance Penetration/ excavation possible but at a slow rate and requires significant effort from equipment used. H High Resistance Penetration/ excavation possible without risk of damage or unacceptable weat to equipment used. R Refusal/Practical Refusal No further progress possible without risk of damage or unacceptable weat to equipment used. These assessments are subjective and are dependent on many factors, including equipment power and weight, condition of excavation or dilling tools and experience of the operator. Complete Water Loss GWNO GRUNDWATER NOT DBSERVED - Observation of groundwater, whather present or not, was not possible due to drilling water, surface segrage or cave in of the borehole' test pit. Gonol (DNDWATER NOT ENCOUN	DRIL	LING/EXCAVATION METHOD									
NDD Non-destructive digging RAB Rotary Air Blast HQ Diamond Core - 63 mm AD* Auger Dilling RC Reverse Circulation HMLC Diamond Core - 63 mm V V-Bit PT Push Tube EX Tracked Hydraulic Excavator TC-Bit, e.g. AD/T WB Washbore HAND Excavated by Hand Methods PENETRATION RESISTANCE Low Resistance Penetration/ excavation possible with little effort from equipment used. M Medium Resistance Penetration/ excavation possible but at a slow rate and requires significant effort from equipment used. R Refuesal/Practical Refusal Norther progress possible without risk of damage or unacceptable wear to equipment used. These assessments are subjective and are dependent on many factors, including equipment power and weight, condition of excavation or drilling vater, surface seepage Complete Water Loss GWNO GROUNDWATER NOT OBSERVED - Observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave-in of the obrehole/ test pit been loberhole/ te	HA	Hand Auger	ADH	Hollow Auger	NQ	Diamond Core - 47 mm					
AD* Auger Drilling RC Reverse Circulation HMLC Diamond Core - 63 mm Y V-Bit PT Push Tube EX Tracked Hydraulic Excavator T TC-Bit, e.g., AD/T WB Washbore HAND Excavated by Hand Methods PENETRATION RESISTANCE Rapid penetration/ excavation possible with little effort from equipment used. Penetration/ excavation is possible but at a slow rate and requires significant effort from equipment used. H High Resistance Penetration/ excavation is possible without risk of damage or unacceptable wear to equipment used. These assessments are subjective and are dependent on many factors, including equipment power and weight, condition of excavation or drilling tools and experience of the operator. Partial water loss VMATER Standing Water Level Partial water loss VMater Sepage Complete Water Loss GROUNDWATER NOT OBSERVED - Observation of groundwater, whether present or not, was not possible due to drilling water, surface sepage or cave-in of the borehold/ test pit. GWNO GROUNDWATER NOT OBSERVED - Observation of following a 150mm seating drive drive and are dependent on many factors, including equipment used. SAMPLING AND TESTING SPT Standard Penetration Testing to A11289.6.3.3 2004 4/,11 I = Blows per 150mm. N = Blow	DT	Diatube Coring	RT	Rotary Tricone bit	NMLC	Diamond Core - 52 mm					
W PT Push Tube EX Tracked Hydraulic Excavator *T TC-Bit, e.g., AD/T WB Washbore HAND Excavated by Hand Methods PENETRATION RESISTANCE Rapid penetration/ excavation possible with little effort from equipment used. Penetration/ excavation possible at an acceptable rate with moderate effort from equipment used. M Medium Resistance Penetration/ excavation possible at an acceptable rate with moderate effort from equipment used. R Refusal/Practical Refusal No further progress possible without risk of damage or unacceptable wear to equipment used. Water Standing Water Level Partial water loss © Water Seepage Complete Water Loss GWNO GROUNDWATER NOT OBSERVED - Observation of groundwater, whether present or not, was not possible due to drilling vater, surface seepage or cave-in of the observed that the borehole/ test pit. GWNE GROUNDWATER NOT OBSERVED - Observation of groundwater, whether present or not, was not possible due to drilling vater. New expression of the operator. Standard Penetration Testing to AS1289.6.3.3 2004 4.7.11 = Blows per 150mm. N = Blows per 300mm penetration following a 150mm seating drive 30/80mm Sylob Jar sample – number indicates sample number Jar sample – number indicates sample number Distubred Samplie Jar sample – number indi	NDD	Non-destructive digging	RAB	Rotary Air Blast	HQ	Diamond Core - 63 mm					
T TC-Bit e.g. AD/T WB Washbore HAND Excavated by Hand Methods PENETRATION RESISTANCE L Low Resistance Rapid penetration/ excavation possible with little effort from equipment used. M Medium Resistance Penetration/ excavation possible but at a slow rate and requires significant effort from equipment used. R Refusal/Practical Refusal No further progress possible without risk of damage or unacceptable ware to equipment used. These assessments are subjective and are dependent on many factors, including equipment power and weight, condition of excavation or drilling tools and experience of the operator. WATER ✓ Standing Water Level ✓ Partial water loss GWNO GROUNDWATER NOT OBSERVED - Observation of groundwater, whether present or not, was not possible to the borehole/ test pit. GWNE GROUNDWATER NOT OBSERVED - Observation of groundwater, whether present or not, was not possible with out interval are reported. SAMPLING AND TESTING SpT Standard Penetration Testing to AS1289.6.3.3 2004 47.11 N=18 Standard Penetration Testing to AS1289.6.3.3 2004 47.11 N=18 Muse apple - number indicates sample on anvil, N is not reported Signifing Jar sample - number indicates sample number Situe Hammer double boucing on anvil, N is not reported	AD*	Auger Drilling	RC	Reverse Circulation	HMLC	Diamond Core - 63 mm					
PENETRATION RESISTANCE Image: Constraint of the interval of the	*V	V-Bit	PT	Push Tube	EX	Tracked Hydraulic Excavator					
L Low Resistance Rapid penetration/ excavation possible with little effort from equipment used. M Medium Resistance Penetration/ excavation is possible but at a slow rate and requires significant effort from equipment used. R Refusal/Practical Refusal No further progress possible without risk of damage or unacceptable wear to equipment used. R Refusal/Practical Refusal No further progress possible without risk of damage or unacceptable wear to equipment used. These assessments are subjective and are dependent on many factors, including equipment power and weight, condition of excavation or drilling tools and experience of the operator. WATER Standing Water Level Partial water loss GRUNDWATER NOT OBSERVED - Observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave-in of the borehole/ test pit. GWNE GROUNDWATER NOT OBSERVED - Observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave-in of the borehole/ test pit. GWNE GROUNDWATER NOT ENCOUNTERED - Derehole/ test pit was dry soon after excavation. However, groundwater could be present in less permeable strata. Inflow may have been observed had the borehole/ test pit. GWNE Standard Penetration Testing to AS1289.6.3.3 2004 A/1.11 Na1 A/1.11 = Blows per 300mm penetration following a 150mm seating drive Where practical refusal occurs, the blows and penetration for that interval are rep	*T	TC-Bit, e.g. AD/T	WB	Washbore	HAND	Excavated by Hand Methods					
M Medium Resistance Penetration/ excavation possible at an acceptable rate with moderate effort from equipment used. R Refusal/Practical Refusal No further progress possible but at a slow rate and requires significant effort from equipment used. R Refusal/Practical Refusal No further progress possible without risk of damage or unacceptable wear to equipment used. These assessments are subjective and are dependent on many factors, including equipment power and weight, condition of excavation or drilling tools and experience of the operator. WATER ✓ Partial water loss GRUND ✓ Complete Water Loss GRUND GROUNDWATER NOT OBSERVED - Observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave-in of the borehole/ test pit. GWNE GROUNDWATER NOT ENCOUNTERED - Descrive/ is the was dry soon after excavation. However, groundwater could be present in less permeable strata. Inflow may have been observed had the borehole/ test pit been left open for a longer period. SAMPLING AND TESTING Standard Penetration Testing to AS1289.6.3.3 2004 Y,11 N= My, Y,11 = Blows per 300mm penetration following a 150mm seating drive Where practical refusal occurs, the blows and penetration for that interval are reported, N is not reported RW Penetration occurred under the hammer and rod weight only, N<1 Hammer double bouncing on anvil, N is not reported Stin Jar sample – number indicates	PENE	TRATION RESISTANCE									
H High Resistance Penetration/excavation is possible but at a slow rate and requires significant effort from equipment used. R Refusal/Practical Refusal No further progress possible without risk of damage or unacceptable wear to equipment used. These assessments are subjective and are dependent on many factors, including equipment power and weight, condition of excavation or drilling tools and experience of the operator. WATER ✓ Partial water loss GRNO GROUNDWATER NOT OBSERVED - Observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave-in of the borehole/ test pit. GWNE GROUNDWATER NOT ENCOUNTERED - Borehole/ test pit was dry soon after excavation. However, groundwater could be present in less permeable strata. Inflow may have been observed had the borehole/ test pit been left open for a longer period. SAMPLING AND TESTING Standard Penetration Testing to AS1289.6.3.3 2004 47,711 = Blows per 150mm. N = Blows per 300mm penetration following a 150mm seating drive 30(80mm) Where practical refusal occurred under the hammer and red weight only, N-1 HB Hammer double bouncing on anvil, N is not reported Sampling S1 Jar sample – number indicates sample number Disturbed Sample Standard Penetrometer (AS1289.6.3.1 1997) GEOLOGICAL BOUNDARIES — -???- = Boundary (Interpreted or inferred) P	L	Low Resistance	Rapid penetr	Rapid penetration/ excavation possible with little effort from equipment used.							
equipment used. R Refusal/Practical Refusal No further progress possible without risk of damage or unacceptable wear to equipment used. These assessments are subjective and are dependent on many factors, including equipment power and weight, condition of excavation or drilling tools and experience of the operator. WATER ✓ Partial water loss ✓ Water Seepage ✓ Complete Water Loss GRNON GROUNDWATER NOT OBSERVED - Observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave-in of the borehole/ test pit. GWNE GROUNDWATER NOT ENCOUNTERRED - Borehole/ test pit was dry soon after excavation. However, groundwater could be present in less permeable strata. Inflow may have been observed had the borehole/ test pit been left open for a longer period. SAMPLING AND TESTING SpT Standard Penetration Testing to A\$1289.6.3.3 2004 47,11 N= 180% spe 150mm. No are period. SWW Penetration occurred under the dweight only, N<1 WW Penetration occurred under the hammer and roc weight only, N<1 HB Hammer double bouncing on anvil, N is not reported Sampling Jar sample – number indicates sample number DC Dynamic Cone Penetrometer (A\$1289.6.3.1 1997) PP Pocket Penetrometer test expressed as instrument reading in kPa	М	Medium Resistance	Penetration/	excavation possible at an a	acceptable rate with r	moderate effort from equipment used.					
These assessments are subjective and are dependent on many factors, including equipment power and weight, condition of excavation or drilling tools and experience of the operator. WATER ✓ Standing Water Level ✓ Wate Seepage ✓ Complete Water Loss GWN0 GROUNDWATER NOT OBSERVED - Observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave-in of the borehole/ test pit. GWNE GROUNDWATER NOT ENCOUNTERED - Borehole/ test pit. GWNE GROUNDWATER NOT ENCOUNTERED - Borehole/ test pit. SAMPLING AND TESTING Sprt Standard Penetration Testing to A\$1289.6.3.3 2004 4,7,11 = 18 dws per 150mm. N = Blows per 300mm penetration following a 150mm seating drive Where practical refusal occurrs, the blows and penetration following a 150mm seating drive Where practical refusal occurs, the blows and penetration following a 150mm seating drive WW Penetration occurred under the rda weight only, N<1 HB Hammer double bouncing on anvil, N is not reported Sampling Jar sample – number indicates sample number Disturbed Sample Dynamic Cone Penetrometer (A\$1289.6.3.1 1997) PP Pocket Penetrometer (A\$1289.6.3.2 1987) GEOLOGICAL BOUNDARIES — -???- = Boundary (Interpreted or inferred) PSP Ponserved Boundary (Position approximate)	н	High Resistance			at a slow rate and red	quires significant effort from					
drilling tools and experience of the operator. WATER ✓ Standing Water Level ✓ Partial water loss ✓ Water Seepage ✓ Complete Water Loss GWNO GROUNDWATER NOT OBSERVED - Observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave-in of the borehole/ test pit. GWNE GROUNDWATER NOT ENCOUNTERED - Borehole/ test pit was dry soon after excavation. However, groundwater could be present in less permeable strata. Inflow may have been observed had the borehole/ test pit been left open for a longer period. SAMPLING AND TESTING Standard Penetration Testing to A\$1289.6.3.3 2004 4.7,11 N=18 4.7,11 = Blows per 150mm. N = Blows per 300mm penetration following a 150mm seating drive 30/80mm Where practical refusal occurs, the blows and penetration following a 150mm seating drive 30/80mm Sigeomm Uhrer practical refusal occurs, the blows and penetration following a 150mm seating drive 30/80mm Sigeomm Uhrer practical refusal occurs, the blows and penetration for that interval are reported, N is not reported RW Penetration occurred under the hammer and rod weight only, N<1 HB Hammer double bouncing on anvil, N is not reported Sampling Jar sample – number indicates sample number Disturbed Sample Bulk disturbed Sample Usto Thin walled tube sample - number ind	R	Refusal/Practical Refusal	No further pr	ogress possible without risk	of damage or unac	ceptable wear to equipment used.					
✓ Standing Water Level ✓ Partial water loss ✓ Water Seepage ✓ Complete Water Loss GWN0 GROUNDWATER NOT OBSERVED - Observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave-in of the borehole/ test pit. GWNE GROUNDWATER NOT ENCOUNTERED - Borehole/ test pit was dry soon after excavation. However, groundwater could be present in less permeable strata. Inflow may have been observed had the borehole/ test pit been left open for a longer period. SAMPLING AND TESTING Standard Penetration Testing to AS1289.6.3.3 2004 47,711 = 47,711 = Blows per 150mm. N = Blows per 300mm penetration following a 150mm seating drive 30/80mm Where practical refusal occurs, the blows and penetration for that interval are reported, N is not reported RW Penetration occurred under the nod weight only, N<1 HB Hammer double bouncing on anvil, N is not reported Sampling Jar sample – number indicates sample number D Disturbed Sample Uso Thin walled tube sample - number indicates nominal sample diameter in millimetres Testing PP Pocket Penetrometer (AS1289.6.3.2 1997) GEOLOGICAL BOUNDARIES ???- = Boundary (Position approximate) = Observed Boundary (Position known) ???- = Boundary (Position approximate) RCC CORE RECOVERY				on many factors, including e	equipment power and	weight, condition of excavation or					
Image: Second state Complete Water Loss GWN0 GROUNDWATER NOT OBSERVED - Observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave-in of the borehole/ test pit. GWNE GROUNDWATER NOT ENCOUNTERED - Borehole/ test pit. GWNE GROUNDWATER NOT ENCOUNTERED - Borehole/ test pit. SAMPLING AND TESTING Sampling SPT Standard Penetration Testing to AS1289.6.3.3 2004 47,111 N=18 4,7,11 = Blows per 150mm. N = Blows per 300mm penetration following a 150mm seating drive 30/80mm Where practical refusal occurs, the blows and penetration for that interval are reported, N is not reported RW Penetration occurred under the rod weight only, N<1 HW Penetration occurred under the hammer and rod weight only, N<1 HB Hammer double bouncing on anvil, N is not reported Sampling Jar sample – number indicates sample number Disturbed Sample Bulk disturbed Sample US0 Thin walled tube sample - number indicates nominal sample diameter in millimetres Testing Pocket Penetrometer test expressed as instrument reading in kPa DCP Dynamic Cone Penetrometer (AS1289.6.3.2 1997) GEOLOGICAL BOUNDARIES — (Position approximate) — (Interpreted or inferred) <t< th=""><th>WATI</th><th>ER</th><th></th><th></th><th></th><th></th></t<>	WATI	ER									
GWN0 GROUNDWATER NOT OBSERVED - Observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave-in of the borehole/ test pit. GWNE GROUNDWATER NOT ENCOUNTERED - Borehole/ test pit was dry soon after excavation. However, groundwater could be present in less permeable strata. Inflow may have been observed had the borehole/ test pit been left open for a longer period. SAMPLING AND TESTING Standard Penetration Testing to AS1289.6.3.3 2004 47,11 = Blows per 150mm. N = Blows per 300mm penetration following a 150mm seating drive Where practical refusal occurs, the blows and penetration for that interval are reported, N is not reported RW Penetration occurred under the rod weight only, N<1		aggreen Standing Water L	evel		\lhd Partial v	vater loss					
SPT Standard Penetration Testing to AS1289.6.3.3 2004 4,7,11 N=18 4,7,11 = Blows per 150mm. N = Blows per 300mm penetration following a 150mm seating drive 30/80mm Where practical refusal occurs, the blows and penetration for that interval are reported, N is not reported RW Penetration occurred under the rod weight only, N<1 HW Penetration occurred under the hammer and rod weight only, N<1 HB Hammer double bouncing on anvil, N is not reported Sampling S1 S1 Jar sample – number indicates sample number D Disturbed Sample B Bulk disturbed Sample U50 Thin walled tube sample - number indicates nominal sample diameter in millimetres Testing PP PP Pocket Penetrometer test expressed as instrument reading in kPa DCP Dynamic Cone Penetrometer (AS1289.6.3.1 1997) PSP Perth Sand Penetrometer (AS1289.6.3.2 1997) GEOLOGICAL BOUNDARIES ?-??= Boundary (Interpreted or inferred) m = Observed Boundary (Position approximate) ???= Boundary (Interpreted or inferred) ROCK CORE RECOVERY TCR =Total Core Recovery (%) RQD = Rock Quality Designation (%)	GWN	O GROUNDWATH due to drilling wat GROUNDWATH groundwater coul been left open for	er, surface see ER NOT ENC d be present in	page or cave-in of the bore OUNTERED - Borehole/ less permeable strata. Inflo	groundwater, whethe hole/ test pit. test pit was dry soon	er present or not, was not possible a after excavation. However,					
4,7,11 N=18 4,7,11 = Blows per 150mm. N = Blows per 300mm penetration following a 150mm seating drive 30/80mm Where practical refusal occurs, the blows and penetration for that interval are reported, N is not reported RW Penetration occurred under the rod weight only, N<1 HW Penetration occurred under the hammer and rod weight only, N<1 HB Hammer double bouncing on anvil, N is not reported Sampling Jar sample – number indicates sample number D Disturbed Sample B Bulk disturbed Sample U50 Thin walled tube sample - number indicates nominal sample diameter in millimetres Testing P PCP Docket Penetrometer test expressed as instrument reading in kPa DCP Dynamic Cone Penetrometer (AS1289.6.3.1 1997) PSP Perth Sand Penetrometer (AS1289.6.3.2 1997) GEOLOGICAL BOUNDARIES ??? = Boundary (Interpreted or inferred) ROCK CORE RECOVERY TCR =Total Core Recovery (%)											
PSP Perth Sand Penetrometer (AS1289.6.3.2 1997) GEOLOGICAL BOUNDARIES	4,7,11 N 30/80m RW HW HB Sampl S1 D B U50 Testin PP	N=18 4,7,11 = Blows M Where practica Penetration occ Penetration occ Hammer double Jar sample – ni Disturbed Sam Bulk disturbed Thin walled tub g Pocket Penetro	per 150mm. I refusal occurs curred under the curred under the bouncing on a umber indicates ple Sample e sample - nurr	N = Blows per 300mm per s, the blows and penetration e rod weight only, N<1 e hammer and rod weight o anvil, N is not reported s sample number hber indicates nominal sam	n for that interval are nly, N<1 ple diameter in millin	reported, N is not reported					
Image: A conserved boundary (Position known) Image: A conserved boundary (Position approximate) (Interpreted or inferred) ROCK CORE RECOVERY TCR =Total Core Recovery (%) RQD = Rock Quality Designation (%)	PSP	Perth Sand Per									
TCR =Total Core Recovery (%) RQD = Rock Quality Designation (%)					ary						
	ROCI	K CORE RECOVERY									
$=\frac{\text{Length of core recovered}}{\text{Length of core run}} \times 100$ $=\frac{\sum Axial \text{ lengths of core } > 100mm}{\text{Length of core run}} \times 100$	TCR =Total Core Recovery (%)RQD = Rock Quality Designation (%)										
		of core > 100mm f core run × 100									

	IICS PTY LTD ECHNICAL ENGINEERS			METHO			CRIPTION	
	FILL			ANIC SOILS OH or Pt)			CLAY (CL, C	I or CH)
$\overline{\bigcirc}$	COUBL	ES or	×××	(ML or MH)				r SM/)
	BOULD	ERS	* * *	. ,	SAND (SP or SW) mbols may be used to indicate mixed materials such			
0000	GRAVE	L (GP or GW)	sandy clay	i litese basic sy	mbois may i		nuicale mixeu ma	ienais such as
CLASSIF			STRATIGRAPHY					
			Borehole and Test Pit	t Logs using the	preferred m	ethod giver	n in AS 1726:2017	, Section 6.1 –
	iption and clas	ARACTERISTIC	`C	GROUP SY				
		Sub	Size	Major Div	T	Symbol	Desc	ription
Fraction	Component	Division	mm			GW	Well graded grav	el and gravel-sand r no fines, no dry
Oversize	BOULDER		>200	ang	L D% of non is	011	stre	ngth. vel and gravel-sand
	COBBLES		63 to 200	OILS cludi er tha	GRAVEL More than 50% coarse fraction >2.36mm	GP	mixtures, little o	r no fines, no dry
		Coarse	19 to 63	ED S Dil ex	GR arse >2.5	GM	Silty gravel, grave	ngth. I-sand-silt mixtures,
Cooroo	GRAVEL	Medium	6.7 to 19	AINE of sc 5mm	Mo	GC	Clayey gravel,	m dry strength. gravel-sand-clay
Coarse grained		Fine	2.36 to 6.7	COARSE GRAINED SOILS More than 65% of soil excluding oversize fraction is greater than 0.075mm	is. of	sw	Well graded sand	to high dry strength. and gravelly sand,
soil	a · · · =	Coarse	0.6 to 2.36	ARSE than ze fr	tion i	SP	Poorly graded san	, no dry strength. d and gravelly sand,
	SAND	Medium	0.21 to 0.6	COA ore t versi	SAND More than 50% coarse fraction <2.36 mm	_		, no dry strength. ilt mixtures, zero to
_ .		Fine	0.075 to 0.21	∑ó	s bre t∱ arse <2.	SM	medium d	ry strength. ndy-clay mixtures,
Fine grained	SILT		0.002 to 0.075		ъ о	SC	medium to hig	h dry strength. w plasticity, very fine
soil	CLAY		<0.002	ding an	v ss	ML	sands, rock flour,	silty or clayey fine
60 X \ \	PLAST		RTIES	FINE GRAINED SOILS More than 35% of soil excluding oversized fraction is less than 0.075mm	nit le %		Inorganic clays	of low to medium
		941. VIIII	June 8	FINE GRAINED SOILS than 35% of soil excluu srsized fraction is less th 0.075mm	Liquid Limit less < 50%	CL, CI	silty clays, medium	clays, sandy clays, to high dry strength.
50 -			0. ⁹	IRAINED 55% of so fraction is 0.075mm		OL	low plasticity, lo	organic silty clays of ow to medium dry
40 - X		CH or OH	110 Å (W,	GR⊿ 35% d frac 0.0		МН		ngth. igh plasticity, high to
1 30 M				TINE thar rsize	Liquid Limit > than 50%	СН		dry strength. high plasticity, high to
PLASTICITY INDEX 19		CI or OI MI	1 or OH	F More ove	Lim Lim	-		dry strength. f medium to high
10				High	lv.	OH		to high dry strength.
0	10 20 30	ML or OL 40 50 60	70 80 90 100	Orga	nic	PT		ther highly organic bils.
		LIQUID LIMIT W., %						
Symbol	RE CONDIT	ION Description						
D		Non- cohesive an	d free running.					
М			rkened in colour. Soil	tends to stick to	gether.			
W			rkened in colour. Soil					·
			be described in relation mit (<i>w</i> < PL); Moist, ne					
liquid lim		et, wet of liquid lim	nit ($w > LL$),	-		55101		
		SISTENCY Undrained Shear	-			DENSIT		
Symbol	Term	Strength (kPa)	SPI "N" #	Symbol	Term		ensity Index %	SPT "N" #
VS S	Very Soft Soft	≤ 12 >12 to ≤ 25	≤ 2 >2 to ≤ 4	VL I	Very Lo Loose		≤ 15 >15 to ≤ 35	0 to 4 4 to 10
S F	Firm	>12 to ≤ 25 >25 to ≤ 50	$>2 to \le 4$ >4 to 8	MD	Medium D		>15 to ≤ 35 >35 to ≤ 65	10 to 30
	Stiff	>50 to ≤ 100	>8 to 15	D	Dense		>65 to ≤ 85	30 to 50
St		>100 to ≤ 200	>15 to 30	VD	Very De	nse	>85	Above 50
VSt	Very Stiff							
	Very Stiff Hard Friable	>200	>30					
VSt H Fr n the abse	Hard Friable ence of test re	>200 - sults, consistency	>30 and density may be a	assessed from (
VSt H Fr n the abse \$PT cor	Hard Friable ence of test re	>200 - sults, consistency	>30	assessed from (
VSt H Fr In the abso SPT corr and equipr MINOR C	Hard Friable ence of test re relations are r ment type. COMPONEN	>200 - sults, consistency ot stated in AS17 TS	>30 and density may be a	assessed from (erburden p	ressure, moisture	content of the so
VSt H Fr n the abse # SPT corr and equipr	Hard Friable ence of test re relations are r ment type. COMPONEN Assessm	>200 - sults, consistency ot stated in AS17 TS ent Guide	>30 and density may be a 26:2017, and may be	assessed from o subject to corre		erburden p Prc	ressure, moisture	content of the so
VSt H Fr n the abse # SPT corr and equipr MINOR (Term	Hard Friable ence of test re relations are r ment type. COMPONEN Assessm	>200 - sults, consistency ot stated in AS17 TS ent Guide just detectable by	>30 and density may be a	assessed from o subject to corre		rerburden p Pro	ressure, moisture	content of the so
VSt H Fr n the abse # SPT corr and equipr MINOR (Term	Hard Friable ence of test re relations are r ment type. COMPONEN Assessm astrono diffe or no diffe	>200 - sults, consistency ot stated in AS17 TS ent Guide just detectable by rent to general pro easily detectable	>30 and density may be a 26:2017, and may be feel or eye but soil pr operties of primary co by feel or eye but soil	assessed from o subject to corre operties little mponent properties little		Perburden p Pro Coarse Fine Coarse	portion by Mass e grained soils: ≤ grained soil: ≤ 15 grained soils: 5 -	content of the so 5% % 12%
VSt H Fr In the abse # SPT corri and equipr MINOR (Term Add 'Trac	Hard Friable ence of test re relations are r ment type. COMPONEN Assessm re, Presence or no diffe h' Presence or no diffe	>200 - sults, consistency ot stated in AS17 TS ent Guide just detectable by rent to general pro- easily detectable rent to general pro-	>30 and density may be a 26:2017, and may be feel or eye but soil pr operties of primary co	assessed from o subject to corre roperties little mponent properties little mponent		Perburden p Pro Coarse Fine Coarse Fine g	ressure, moisture portion by Mass e grained soils: ≤ grained soil: ≤ 15	content of the so 5% % 12% 0%

TERMS FOR ROCK MATERIAL STRENGTH AND WEATHERING

CLASSIFICATION AND INFERRED STRATIGRAPHY

Rock is broadly classified and described in Borehole and Test Pit Logs using the preferred method given in AS1726 -2017, Section 6.2 - Rock identification, description and classification.

ROCK MA	ROCK MATERIAL STRENGTH CLASSIFICATION							
Symbol	Term	Point Load Index, Is ₍₅₀₎ (MPa) [#]	Field Guide					
VL	Very Low	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30 mm can be broken by finger pressure.					
L	Low	0.1 to 0.3	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blows of pick point; has dull sound under hammer. A piece of core 150 mm long by 50 mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.					
М	Medium	0.3 to 1	Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.					
Н	High	1 to 3	A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken with pick with a single firm blow; rock rings under hammer.					
VH	Very High	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.					
EH	Extremely High	>10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.					
#Rock St	rength Test Res	ults 🔻	Point Load Strength Index, Is(50), Axial test (MPa)					

Point Load Strength Index, Is(50), Diametral test (MPa)

Relationship between rock strength test result (Is(50)) and unconfined compressive strength (UCS) will vary with rock type and strength, and should be determined on a site-specific basis. However UCS is typically 20 x Is(50).

ROCK	ROCK MATERIAL WEATHERING CLASSIFICATION							
Sym	bol	Term	Field Guide					
RS		Residual Soil	Soil developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the soil has not been significantly transported.					
xw		Extremely Weathered	Rock is weathered to such an extent that it has soil properties - i.e. it either disintegrates or can be remoulded, in water.					
	HW		Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or					
DW	MW	Distinctly Weathered	may be decreased due to deposition of weathering products in pores. In some environments it is convenient to subdivide into Highly Weathered and Moderately Weathered, with the degree of alteration typically less for MW.					
SW		Slightly Weathered	Rock slightly discoloured but shows little or no change of strength relative to fresh rock.					
FR		Fresh	Rock shows no sign of decomposition or staining.					

ABBREVIATIONS AND DESCRIPTIONS FOR ROCK MATERIAL AND DEFECTS

CLASSIFICATION AND INFERRED STRATIGRAPHY

Rock is broadly classified a description and classification	and de			Pit Logs using the p	oreferred	metho	od given in AS1	726 – 20	17, Section 6.2 – Rock identification,					
DETAILED ROCK DEFEC		CING												
Bedding Thickness* (Spacing between bedd	ling pa	rtings)												
Term			Spacing	ı (mm)										
Thinly laminated							<6							
Laminated							6 – 20							
Very thinly bedded							20 – 60							
Thinly bedded				60 – 200										
Medium bedded							200 - 600							
Thickly bedded							600 - 2,000							
Very thickly bedded							> 2,000							
ABBREVIATIONS AND D	ESCRI	PTIONS F	OR DEFECT TYPE	ES										
Defect Type		Abbr.	Description											
Joint		JT		ire or parting, forme filled by air, water o					ne rock has little or no tensile strength. gement.					
Bedding Parting		BP	layering/ bedding.		ne layerin	ig or s			ength, parallel or sub-parallel to icating orientation during deposition,					
Contact		СО	The surface betwe	en two types or age	es of rock	ί.								
Sheared Surface		SSU	A near planar, cur	r planar, curved or undulating surface which is usually smooth, polished or slickensided.										
Sheared Seam/ Zone (Fault)	Ş	SS/SZ		eam or zone with roughly parallel almost planar boundaries of rock substance cut by closely spaced (often <50 m) parallel and usually smooth or slickensided joints or cleavage planes.										
Crushed Seam/ Zone (Fault)	(CS/CZ		eam or zone composed of disoriented usually angular fragments of the host rock substance, with roughly parallel ear-planar boundaries. The brecciated fragments may be of clay, silt, sand or gravel sizes or mixtures of these.										
Extremely Weathered Seam/ Zone	xv	VS/XWZ		n of soil substance, often with gradational boundaries, formed by weathering of the rock material in places.										
Infilled Seam		IS		m of soil substance, usually clay or clayey, with very distinct roughly parallel boundaries, formed by soil ating into joint or open cavity.										
Vein		VN	Distinct sheet-like	nct sheet-like body of minerals crystallised within rock through typically open-space filling or crack-seal growth.										
NOTE: Defects size of <1	00mm	SS, CS a	nd XWS. Defects si	ize of >100mm SZ,	CZ and >	WZ.								
ABBREVIATIONS AND D	ESCRI	PTIONS F	OR DEFECT SHAI	PE AND ROUGHNE	ESS									
Shape	Abbr.	Descrip	tion	Roughness	Abbr.	Desc	scription							
Planar	PR	Consist	ent orientation	Polished	POL	Shin	y smooth surfac	ce						
Curved	CU	Gradual	change in ion	Slickensided	SL	Groc	oved or striated surface, usually polished							
Undulating	UN	Wavy si		Smooth	SM	Smc	nooth to touch. Few or no surface irregularities							
Stepped	ST		more well defined	Rough	RO	Man	ny small surface irregularities (amplitude generally <1mm). Is like fine to coarse sandpaper							
Irregular	IR		narp changes in	Very Rough	VR	Man		irregularit	ies, amplitude generally >1mm.					
Orientation:		ical Boreh	oles – The dip (incli	I ination from horizont ion is measured as t		defec	t.							
ABBREVIATIONS AND DE						ungio	DEFECT APE							
Coating	Abbr.	Descripti	ion				Aperture	Abbr.	Description					
Clean		-	coating or infilling				Closed	CL	Closed.					
Stain	SN	No visible	o visible coating but surfaces are discoloured by staining, ten limonite (orange-brown) OP Without any infill material.											
				neral substance, usi	ually too t	hin	Infilled	-	A visible coating of soil or mineral substance, usually too thin Soil or rock i.e. clay, silt, talc, pyrite					